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• Lecture aims:

• Be familiar with the design formulas that relate the second-order pole locations to 

percent overshoot, settling time, rise time, and time to peak

• Understand the concept of  stability of  dynamic systems



Time Response

• Time response 

• Consider the first-order system. Physically, this system may represent an RC circuit, 

thermal system, or the like. A simplified block diagram is shown in Figure. The input-

output relationship is given by

• In the following, we shall analyze the system responses to such inputs as the unit-step, 

unit-ramp, and unit-impulse functions. The initial conditions are assumed to be zero.



The behavior is characterized by its static sensitivity, K and remains constant 

regardless of  input frequency (ideal dynamic characteristic).

A linear potentiometer used as position sensor is a 

zero-order sensor.
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Where 0  x  xm and Vr is a reference voltage

All the a’s and b’s other than a0 and b0 are zero.

where K = static sensitivity = b0/a0
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Zero-order Systems



Where K = b0/a0 is the static sensitivity

 = a1/a0   is the system’s  time constant (dimension of  time)

All the a’s and b’s other than a1, a0 and b0 are zero.

)(
)(

001 txba
dt

tdy
a 

)()(
)(

tKxty
dt

tdy


1
)(




S

K
S

x

y



First-Order Systems



First-Order Systems



Time Response

• Unit-Step Response of  First-Order Systems.

Since the Laplace transform of  the unit-step function is l/s, substituting R(s) = 

1/s into Equation

Expanding C(s)into partial fractions gives

Taking the inverse Laplace transform of  Equation (5-2), we obtain



Time Response

• Unit-Step Response of  First-Order Systems.

One important characteristic of  such an exponential 
response curve c(t)is that at t = T the value of  c(t)is 
0.632,or the response c(t)has reached 63.2% of  its total 
change

Time constant : T

Note that the smaller the time constant T ,the faster the 
system response. 



Time, t
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The complete solution:

Assume for t < 0, y = y0 , at time = 0 the input quantity, x increases instantly by an 

amount A. Therefore t > 0
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Applying the initial condition, we get C = y0-KA, thus gives
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First-Order Systems: Step Response
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Non-dimensional step response of  first-order instrument
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Time Response

• Unit-Ramp Response of  First-Order Systems.

Since the Laplace transform of the unit-ramp function is l/s2,
we obtain the output of  the system

• Expanding C(s) into partial fractions gives

• Taking the inverse Laplace transform of  Equation, we obtain

• The smaller the time constant T, the smaller the steady-state 
error in following the ramp input



Time Response

• Unit-Impulse Response of  First-Order Systems. 

For the unit-impulse input, R(s)= 1and the output of  the 

system can be obtained as

• The inverse Laplace transform of  Equation gives, and 

The response curve given by Equation is shown in 

Figure



Time Response

• Important Property of  Linear Time-Invariant Systems. 

• In the analysis above, it has been shown that for the unit-ramp input the output c (t) is

• For the unit-step input, which is the derivative of  unit-ramp input, the output c (t) is

• Finally, for the unit-impulse input, which is the derivative of  unit-step input, the output c 
(t) is



Time Response

Second-order systems

Frequently, the performance characteristics of  a control system 

are specified in terms of  the transient response to a unit-step 

input

1. Delay time, td: The delay time is the time required for the 

response to reach half  the final value the very first time. 

Since the peak time corresponds to the first peak 

overshoot,

2. Rise time, tr: The rise time is the time required for the 

response to rise from 10% to 90%, 5% to 95%,or 0% to 

100% of  its final value. the 10%to 90%rise time is 

commonly used. Clearly, for a small value of  tr, ωn must be 

large.



Time Response

Second-order systems

Frequently, the performance characteristics of  a control system are 

specified in terms of  the transient response to a unit-step input

3. Peak time, tp: The peak time is the time required for the response 

to reach the first peak of  the overshoot.

4. Maximum (percent) overshoot, Mp: The maximum overshoot is 

the maximum peak value of  the response curve measured from 

unity. 

5. Settling time, ts: The settling time is the time required for the 

response curve to reach and stay within a range about the final 

value. The settling time corresponding to ±2% or ± 5% tolerance 

band may be measured in terms of  the time constant



Model Examples

• DC- Motor Controller

• Response of  2nd order system 

without controller



Time Response

Second-order systems

LABVIEW application

../../Vibration Lab/Express Vibration Lab.vi


Time Response
Second-order systems

Case 1 
In this case the poles of G(s) are imaginary since

, and relation becomes

If  we expand Y(s) in partial fractions, we have

observe that the response y(t) is a sustained oscillation with

constant frequency to ωn and constant amplitude equal to 1.

In this case, we say that the system is undamped

are called the attenuation or damping 

constant and the damped natural 
frequency of the system, respectively



Time Response
Second-order systems

Case 2 
In this case the poles of G(s) are a complex conjugate pair 

since

, and relation becomes

If  we expand Y(s) in partial fractions, we have

observe that the response y(t) is a damped oscillation

which tends to 1 as t → ∞.

In this case, we say that the system is underdamped.

are called the attenuation or damping 

constant and the damped natural 
frequency of the system, respectively



Time Response
Second-order systems

Case 3 

In this case the poles of G(s) are the real double pole -ωn, 

and relation becomes

If  we expand Y(s) in partial fractions, we have

we observe that the waveform of  the response y(t) involves no

oscillations, and asymptotically tends to 1 as t → ∞ .

In this case we say that the system is critically damped



Stability Systems of  Linear system

Definition :

The stability of  a dynamic system is defined in a similar manner. The 

response to a displacement, or initial condition, will result in either a 

decreasing, neutral, or increasing response.

Stability 

of  system 

after 

exciting 

force 



Stability Systems of  Linear system

Definition :

The characteristics equation of  second order system

a) Overdamping 

b) Critical damping

c) underdamping

Generally, if  any of  the roots of  the characteristics 

equation have positive real parts, then the system 

will be unstable  

It was stated that a control system is stable if  and only 

if  all closed-loop poles lie in the left-half  s plane



Stability Systems of  Linear system

Routh's Stability Criterion

absolute stability can be obtained directly from the coefficients of  the characteristic 

equation.

The procedure in Routh's stability criterion is as follows:

1. Write the polynomial in s in the following form:

where the coefficients are real quantities. Assume that a ≠ 0; that is, any zero root has 

been removed.

2. If  any of  the coefficients are zero or negative in the presence of  at least one positive 

coefficient, there is a root or roots that are imaginary or that have positive

3. If  all coefficients are positive, arrange the coefficients of  the polynomial in rows and 

columns according to the following pattern:



Stability Systems of  Linear system

Routh's Stability Criterion

The Routh-Hurwitz criterion states that the number of  roots of  q(s) 
with positive real parts is equal to the number of  changes in sign of  

the first column of  the Routh array

The number of  changes of sign in the first column of  the array developed for 

the polynomial in s equal to the number of  roots that are located to the right 

of  the vertical line 



Model Examples

• Pulse Width Modulation (PWM)



Steady state error

Types of Systems and Error Constants

• In the design of  a control system the steady-state 

performance is of  special significance, since we seek a 

system whose output y(t).

• Consider the unity feedback system of  Figure and assume 

that G(s) has the form

• A system is called type j system when G(s) has j poles at 

the point s =0



Steady state error

Types of Systems and Error Constants

• The position (or step) error constant Kp

• Substitute G(s) in Kp equation.



Steady state error

Types of Systems and Error Constants

• The speed (or velocity, or ramp) error constant Kv of  a 

system

• Substitute G(s) in Kv equation.



Steady state error

Types of Systems and Error Constants

• The acceleration (or parabolic) error constant Ka of  a 

system

• Substitute G(s) in Ka equation.



Steady state error

Consider the closed- loop system of unity feedback of 

Figure. The system error e(t) is defined as the 

difference between the command signal r(t) and the 

output of the system y(t).

If we apply the final value theorem 

The steady-state error ess(t) is given by

In order to evaluate ess(t), we work as follows



Steady state error

We will examine the steady-state error ess(t) for the 

following three special forms of  the input r(t).

1. r(t) = P. In this case the input is a step function with 

amplitude P. Here, ess(t) is called the position error. 
We have



Steady state error

2. r(t) = Vt. In this case the input is a ramp function with 

slope equal to V.
Here ess(t) is called the speed or velocity error. We have

We will examine the steady-state error ess(t) for the 

following three special forms of  the input r(t).



Steady state error

3. r(t) = 1/2At2. In this case the input is a parabolic function. 

Here, ess(t) is called the acceleration error. We have

We will examine the steady-state error ess(t) for the 

following three special forms of  the input r(t).



Steady state error

Remember that:

The terms position error, velocity error, and acceleration 
error mean steady-state deviations in the output position

The error constants Kp, Kv, and Ka describe the ability of  a 

unity-feedback system to reduce or eliminate steady-state error.

It is noted that to improve the steady state performance we 

can increase the type of  the system by adding an integrator or 

integrators to the feedforward path. 


